3-Dimensional Figures and Nets A 3-Dimensional Pattern

Figure	Number of Faces	Number of Vertices	Total Faces and Vertices	Number of Edges
Α				
В				
С				
D				
E				
F				
G				
Н				

Look for a pattern in the table above. Then complete this statement.

The sum of the number of faces and vertices is equal to the number of
plus
Let $f=$ number of faces, $\nu=$ number of vertices, and $e=$ number of edges. Write the statement you completed above as an equation.
Write a formula for the number of edges.